Advertisement
Review Article| Volume 70, ISSUE 1, P137-150, February 2023

The Pediatrician’s Role in Protecting Children from Environmental Hazards

  • Leonardo Trasande
    Correspondence
    Corresponding author. Department of Pediatrics, New York University School of Medicine, 227 East 30th Street Room 807, New York, NY 10016.
    Affiliations
    Department of Pediatrics, Division of Environmental Pediatrics, NYU Grossman School of Medicine, New York, NY, USA

    Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA

    Department of Environmental Medicine, NYU Grossman School of Medicine, New York, NY, USA

    NYU Wagner School of Public Service, New York, NY, USA

    NYU School of Global Public Health, New York, NY, USA
    Search for articles by this author
  • Christopher D. Kassotis
    Affiliations
    Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI, USA
    Search for articles by this author

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Pediatric Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • National Research Council
        Pesticides in the diets of Infants and children.
        National Academy Press, Washington, DC1993
        • Choi J.
        • Knudsen L.E.
        • Mizrak S.
        • et al.
        Identification of exposure to environmental chemicals in children and older adults using human biomonitoring data sorted by age: Results from a literature review.
        Int J Hyg Environ Health. 2017; 220: 282-298
        • Johnson-Restrepo B.
        • Kannan K.
        An assessment of sources and pathways of human exposure to polybrominated diphenyl ethers in the United States.
        Chemosphere. 2009; 76: 542-548
        • Barker D.J.
        • Godfrey K.M.
        • Osmond C.
        • et al.
        The relation of fetal length, ponderal index and head circumference to blood pressure and the risk of hypertension in adult life.
        Paediatric perinatal Epidemiol. 1992; 6: 35-44
        • Barker D.J.
        • Osmond C.
        • Forsen T.J.
        • et al.
        Trajectories of growth among children who have coronary events as adults.
        N Engl J Med. 2005; 353: 1802-1809
        • Jusko T.A.
        • Henderson C.R.
        • Lanphear B.P.
        • et al.
        Blood Lead Concentrations< 10 mug/dL and Child Intelligence at 6 Years of Age.
        Environ Health Perspect. 2008; 116: 243
        • Lanphear B.
        • Hornung R.
        • Khoury J.
        • et al.
        Low-level environmental lead exposure and children's intellectual function: an international pooled analysis.
        Environ Health Perspect. 2005; 113: 894-899
        • Canfield R.L.
        • Henderson Jr., C.R.
        • Cory-Slechta D.A.
        • et al.
        Intellectual Impairment in Children with Blood Lead Concentrations below 10 {micro} g per Deciliter.
        N Engl J Med. 2003; 348: 1517
        • Trasande L.
        • Landrigan P.J.
        • Schechter C.
        Public health and economic consequences of methyl mercury toxicity to the developing brain.
        Environ Health Perspect. 2005; 113: 590-596
        • Grandjean P.
        • Budtz-Jorgensen E.
        • White R.F.
        • et al.
        Methylmercury Exposure Biomarkers as Indicators of Neurotoxicity in Children Aged 7 Years.
        Am J Epidemiol. 2003; 150: 301-305
        • National Research Council
        Toxicological effects of methylmercury.
        National Academy Press, Washington, DC2000
        • Weitzman M.
        • Gortmaker S.
        • Walker D.K.
        • et al.
        Maternal smoking and childhood asthma.
        Pediatrics. 1990; 85: 505-511
        • Lupton C.
        • Burd L.
        • Harwood R.
        Cost of fetal alcohol spectrum disorders.
        Am J Med Genet. 2004; 127: 42-50
        • Jacobson J.L.
        • Jacobson S.W.
        Intellectual Impairment in Children Exposed to Polychlorinated Biphenyls in Utero.
        N Engl J Med. 1996; 335: 783
        • Trasande L.
        Environmental contributors to autism: the pediatrician's role.
        Curr Probl Pediatr Adolesc Health Care. 2014; 44: 319-320
        • McConnell R.
        • Islam T.
        • Shankardass K.
        • et al.
        Childhood incident asthma and traffic-related air pollution at home and school.
        Environ Health Perspect. 2010; 118: 1021-1026
        • Trasande L.
        • Thurston G.D.
        The role of air pollution in asthma and other pediatric morbidities.
        J Allergy Clin Immunol. 2005; 115: 689-699
        • Gent J.F.
        • Triche E.W.
        • Holford T.R.
        • et al.
        Association of low-level ozone and fine particles with respiratory symptoms in children with asthma.
        JAMA. 2003; 290 (Am Med Assoc): 1859-1867
        • McConnell R.
        • Berhane K.
        • Gilliland F.
        • et al.
        Asthma in exercising children exposed to ozone: a cohort study.
        The Lancet. 2002; 359: 386-391
        • Roberts J.R.
        • Gitterman B.A.
        Pediatric environmental health education: a survey of US pediatric residency programs.
        Ambul Pediatr. 2003; 3: 57-59
        • Trasande L.
        • Boscarino J.
        • Graber N.
        • et al.
        The environment in pediatric practice: a study of New York pediatricians' attitudes, beliefs, and practices towards children's environmental health.
        J Urban Health. 2006; 83: 760-772
        • Trasande L.
        • Niu J.
        • Li J.
        • et al.
        The Environment and Children's Health Care in Northwest China.
        BMC Pediatr. 2014; 14: 82
        • Trasande L.
        • Schapiro M.L.
        • Falk R.
        • et al.
        Pediatrician attitudes, clinical activities, and knowledge of environmental health in Wisconsin.
        WMJ. 2006; 105: 45-49
        • Kahn L.G.
        • Philippat C.
        • Nakayama S.F.
        • et al.
        Endocrine-disrupting chemicals: implications for human health.
        Lancet Diabetes Endocrinol. 2020; 8: 703-718
        • Genco M.
        • Anderson-Shaw L.
        • Sargis R.M.
        Unwitting Accomplices: Endocrine Disruptors Confounding Clinical Care.
        J Clin Endocrinol Metab. 2020; 105: e3822-e3827
        • Marie C.
        • Hamlaoui S.
        • Bernard L.
        • et al.
        Exposure of hospitalised pregnant women to plasticizers contained in medical devices.
        BMC women's health. 2017; 17: 45
        • Kelley K.E.
        • Hernández-Díaz S.
        • Chaplin E.L.
        • et al.
        Identification of phthalates in medications and dietary supplement formulations in the United States and Canada.
        Environ Health Perspect. 2012; 120: 379-384
        • Stroustrup A.
        • Bragg J.B.
        • Busgang S.A.
        • et al.
        Sources of clinically significant neonatal intensive care unit phthalate exposure.
        J Expo Sci Environ Epidemiol. 2020; 30: 137-148
        • Bacle A.
        • Thevenot S.
        • Grignon C.
        • et al.
        Determination of bisphenol A in water and the medical devices used in hemodialysis treatment.
        Int J pharmaceutics. 2016; 505: 115-121
        • Shenep L.E.
        • Shenep M.A.
        • Cheatham W.
        • et al.
        Efficacy of intravascular catheter lock solutions containing preservatives in the prevention of microbial colonization.
        J Hosp Infect. 2011; 79: 317-322
        • Ghassabian A.
        • Vandenberg L.
        • Kannan K.
        • et al.
        Endocrine-disrupting chemicals child health.
        Annu Rev Pharmacol Toxicol. 2022; 62: 573-594
        • Bergman A.
        • Heindel J.J.
        • Jobling S.
        • et al.
        State of the science of endocrine disrupting chemicals 2012.
        United National Environment Programme and Worl Health Organization, 2013
        • Diamanti-Kandarakis E.
        • Bourguignon J.-P.
        • Giudice L.C.
        • et al.
        Endocrine-Disrupting Chemicals: An Endocrine Society Scientific Statement.
        Endocr Rev. 2009; 30: 293-342
        • Gore A.C.
        • Chappell V.A.
        • Fenton S.E.
        • et al.
        EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals.
        Endocr Rev. 2015; 36: E1-E150
        • Trasande L.
        • Shaffer R.M.
        • Sathyanarayana S.
        Food Additives and Child Health.
        Pediatrics. 2018; 142
        • Di Renzo G.C.
        • Conry J.A.
        • Blake J.
        • et al.
        International Federation of Gynecology and Obstetrics opinion on reproductive health impacts of exposure to toxic environmental chemicals.
        Int J Gynecol Obstet. 2015; 131: 219-225
        • Heindel J.J.
        • Balbus J.
        • Birnbaum L.
        • et al.
        Developmental Origins of Health and Disease: Integrating Environmental Influences.
        Endocrinology. 2015; 156: 3416-3421
        • Stel J.
        • Legler J.
        The Role of Epigenetics in the Latent Effects of Early Life Exposure to Obesogenic Endocrine Disrupting Chemicals.
        Endocrinology. 2015; 156: 3466-3472
        • Skinner M.K.
        • Manikkam M.
        • Tracey R.
        • et al.
        Ancestral dichlorodiphenyltrichloroethane (DDT) exposure promotes epigenetic transgenerational inheritance of obesity.
        BMC Med. 2013; 11: 228
        • Janesick A.
        • Blumberg B.
        Endocrine disrupting chemicals and the developmental programming of adipogenesis and obesity.
        Birth Defects Res C: Embryo Today Rev. 2011; 93: 34-50
        • Nomura T.
        Transgenerational carcinogenesis: induction and transmission of genetic alterations and mechanisms of carcinogenesis.
        Mutat Research/Reviews Mutat Res. 2003; 544: 425-432
        • Janesick A.S.
        • Shioda T.
        • Blumberg B.
        Transgenerational inheritance of prenatal obesogen exposure.
        Mol Cell Endocrinol. 2014; 398: 31-35
        • Herbstman J.B.
        • Sjodin A.
        • Kurzon M.
        • et al.
        Prenatal exposure to PBDEs and neurodevelopment.
        Environ Health Perspect. 2010; 118: 712-719
        • Rauh V.A.
        • Garfinkel R.
        • Perera F.P.
        • et al.
        Impact of prenatal chlorpyrifos exposure on neurodevelopment in the first 3 years of life among inner-city children.
        Pediatrics. 2006; 118
        • Rauh V.
        • Arunajadai S.
        • Horton M.
        • et al.
        Seven-year neurodevelopmental scores and prenatal exposure to chlorpyrifos, a common agricultural pesticide.
        Environ Health Perspect. 2011; 119: 1196
        • Rauh V.A.
        • Perera F.P.
        • Horton M.K.
        • et al.
        Brain anomalies in children exposed prenatally to a common organophosphate pesticide.
        Proc Natl Acad Sci U S A. 2012; 109: 7871-7876
        • Engel S.M.
        • Bradman A.
        • Wolff M.S.
        • et al.
        Prenatal Organophosphorus Pesticide Exposure and Child Neurodevelopment at 24 Months: An Analysis of Four Birth Cohorts.
        Environ Health Perspect. 2015; 124: 822-830
        • Bouchard M.
        • Chevrier J.
        • Harley K.
        • et al.
        Prenatal exposure to organophosphate pesticides and IQ in 7-year-old children.
        Environ Health Perspect. 2011; 119: 1189
        • Engel S.
        • Wetmur J.
        • Chen J.
        • et al.
        Prenatal exposure to organophosphates, paraoxonase 1, and cognitive development in childhood.
        Environ Health Perspect. 2011; 119: 1182
        • Rundle A.
        • Hoepner L.
        • Hassoun A.
        • et al.
        Association of childhood obesity with maternal exposure to ambient air polycyclic aromatic hydrocarbons during pregnancy.
        Am J Epidemiol. 2012; 175: 1163-1172
        • Harley K.G.
        • Aguilar Schall R.
        • Chevrier J.
        • et al.
        Prenatal and postnatal bisphenol A exposure and body mass index in childhood in the CHAMACOS cohort.
        Environ Health Perspect. 2013; 121 (520e511-516): 514-520
        • Hoepner L.A.
        • Whyatt R.M.
        • Widen E.M.
        • et al.
        Bisphenol A and Adiposity in an Inner-City Birth Cohort.
        Environ Health Perspect. 2016; 124: 1644-1650
        • Buckley J.P.
        • Engel S.M.
        • Braun J.M.
        • et al.
        Prenatal Phthalate Exposures and Body Mass Index Among 4- to 7-Year-old Children: A Pooled Analysis.
        Epidemiology. 2016; 27: 449-458
        • Harley K.G.
        • Berger K.
        • Rauch S.
        • et al.
        Association of prenatal urinary phthalate metabolite concentrations and childhood BMI and obesity.
        Pediatr Res. 2017; 82: 405-415
        • Maresca M.M.
        • Hoepner L.A.
        • Hassoun A.
        • et al.
        Prenatal Exposure to Phthalates and Childhood Body Size in an Urban Cohort.
        Environ Health Perspect. 2016; 124: 514-520
        • Deziel N.C.
        • Rull R.P.
        • Colt J.S.
        • et al.
        Polycyclic aromatic hydrocarbons in residential dust and risk of childhood acute lymphoblastic leukemia.
        Environ Res. 2014; 133: 388-395
        • Gunier R.B.
        • Kang A.
        • Hammond S.K.
        • et al.
        A task-based assessment of parental occupational exposure to pesticides and childhood acute lymphoblastic leukemia.
        Environ Res. 2017; 156: 57-62
        • Ward M.H.
        • Colt J.S.
        • Deziel N.C.
        • et al.
        Residential levels of polybrominated diphenyl ethers and risk of childhood acute lymphoblastic leukemia in California.
        Environ Health Perspect. 2014; 122: 1110-1116
        • Wolff M.S.
        • Teitelbaum S.L.
        • McGovern K.
        • et al.
        Phthalate exposure and pubertal development in a longitudinal study of US girls.
        Hum Reprod (Oxford, England). 2014; 29: 1558-1566
        • Harley K.G.
        • Rauch S.A.
        • Chevrier J.
        • et al.
        Association of prenatal and childhood PBDE exposure with timing of puberty in boys and girls.
        Environ Int. 2017; 100: 132-138
        • Ashwood P.
        • Schauer J.
        • Pessah I.N.
        • et al.
        Preliminary evidence of the in vitro effects of BDE-47 on innate immune responses in children with autism spectrum disorders.
        J neuroimmunology. 2009; 208: 130-135
        • Shelton J.F.
        • Geraghty E.M.
        • Tancredi D.J.
        • et al.
        Neurodevelopmental disorders and prenatal residential proximity to agricultural pesticides: the CHARGE study.
        Environ Health Perspect. 2014; 122: 1103-1109
        • Volk H.E.
        • Hertz-Picciotto I.
        • Delwiche L.
        • et al.
        Residential proximity to freeways and autism in the CHARGE study.
        Environ Health Perspect. 2011; 119: 873-877
        • Attina T.M.
        • Hauser R.
        • Sathyanarayana S.
        • et al.
        Exposure to endocrine-disrupting chemicals in the USA: a population-based disease burden and cost analysis.
        Lancet Diabetes Endocrinol. 2016; 4: 996-1003
        • Grosse S.D.
        • Matte T.D.
        • Schwartz J.
        • et al.
        Economic Gains Resulting from the Reduction in Children's Exposure to Lead in the United States.
        Environ Health Perspect. 2002; 110: 563-569
        • Muennig P.
        The social costs of childhood lead exposure in the post-lead regulation era.
        Arch Pediatr Adolesc Med. 2009; 163: 844-849
        • Ross K.
        • Chmiel J.F.
        • Ferkol T.
        The impact of the Clean Air Act.
        J Pediatr. 2012; 161: 781-786
        • Trasande L.
        • Liu Y.
        Reducing The Staggering Costs Of Environmental Disease In Children, Estimated At $76.6 Billion In 2008.
        Health Aff. 2011; 30: 863-870
        • Trasande L.
        • Malecha P.
        • Attina T.M.
        Particulate Matter Exposure and Preterm Birth: Estimates of U.S. Attributable Burden and Economic Costs.
        Environ Health Perspect. 2016; 124: 1913-1918
        • Gauderman W.J.
        • Avol E.
        • Gilliland F.
        • et al.
        The Effect of Air Pollution on Lung Development from 10 to 18 Years of Age.
        N Engl J Med. 2004; 351: 1057-1067
        • Kassotis C.D.
        • Trasande L.
        Endocrine disruptor global policy.
        Adv Pharmacol (San Diego, Calif). 2021; 92: 1-34
        • Ding D.
        • Xu L.
        • Fang H.
        • et al.
        The EDKB: an established knowledge base for endocrine disrupting chemicals.
        BMC Bioinformatics. 2010; 11: S5
        • Vandenberg L.N.
        • Colborn T.
        • Hayes T.B.
        • et al.
        Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses.
        Endocr Rev. 2012; 33: 378-455
        • Kassotis C.D.
        • Vandenberg L.N.
        • Demeneix B.A.
        • et al.
        Endocrine-disrupting chemicals: economic, regulatory, and policy implications.
        Lancet Diabetes Endocrinol. 2020; 8: 719-730
        • Neltner T.G.
        • Alger H.M.
        • Leonard J.E.
        • et al.
        Data gaps in toxicity testing of chemicals allowed in food in the United States.
        Reprod Toxicol. 2013; 42: 85-94
        • Neltner T.G.
        • Kulkarni N.R.
        • Alger H.M.
        • et al.
        Navigating the U.S. Food Additive Regulatory Program.
        Compr Rev Food Sci Food Saf. 2011; 10: 342-368
        • Sarantis H.
        • Naidenko O.V.
        • Gray S.
        • et al.
        Not so sexy: The health risks of secret chemicals in fragrance.
        (Accessed February 21, 2022)
        • Kuruto-Niwa R.
        • Nozawa R.
        • Miyakoshi T.
        • et al.
        Estrogenic activity of alkylphenols, bisphenol S, and their chlorinated derivatives using a GFP expression system.
        Environ Toxicol Pharmacol. 2005; 19: 121-130
        • Chen M.-Y.
        • Ike M.
        • Fujita M.
        Acute toxicity, mutagenicity, and estrogenicity of bisphenol-A and other bisphenols.
        Environ Toxicol. 2002; 17: 80-86
        • Si Yoshihara
        • Mizutare T.
        • Makishima M.
        • et al.
        Potent Estrogenic Metabolites of Bisphenol A and Bisphenol B Formed by Rat Liver S9 Fraction: Their Structures and Estrogenic Potency.
        Toxicol Sci. 2004; 78: 50-59
        • Okuda K.
        • Fukuuchi T.
        • Takiguchi M.
        • et al.
        Novel Pathway of Metabolic Activation of Bisphenol A-Related Compounds for Estrogenic Activity.
        Drug Metab Dispos. 2011; 39: 1696-1703
        • Audebert M.
        • Dolo L.
        • Perdu E.
        • et al.
        Use of the γH2AX assay for assessing the genotoxicity of bisphenol A and bisphenol F in human cell lines.
        Arch Toxicol. 2011; 85: 1463-1473
        • Vinas R.
        • Watson C.S.
        Bisphenol S disrupts estradiol-induced nongenomic signaling in a rat pituitary cell line: effects on cell functions.
        Environ Health Perspect. 2013; 121: 352-358
        • Yang J.
        • Zhao Y.
        • Li M.
        • et al.
        A Review of a Class of Emerging Contaminants: The Classification, Distribution, Intensity of Consumption, Synthesis Routes, Environmental Effects and Expectation of Pollution Abatement to Organophosphate Flame Retardants (OPFRs).
        Int J Mol Sci. 2019; 20: 2874
        • Kunikane H.
        • Watanabe K.
        • Fukuoka M.
        • et al.
        Double-blind randomized control trial of the effect of recombinant human erythropoietin on chemotherapy-induced anemia in patients with non-small cell lung cancer.
        Int J Clin Oncol. 2001; 6: 296-301
        • Goulson D.
        REVIEW: An overview of the environmental risks posed by neonicotinoid insecticides.
        J Appl Ecol. 2013; 50: 977-987
        • Brendel S.
        • Fetter É.
        • Staude C.
        • et al.
        Short-chain perfluoroalkyl acids: environmental concerns and a regulatory strategy under REACH.
        Environ Sci Eur. 2018; 30: 9
        • Qiu W.
        • Zhao Y.
        • Yang M.
        • et al.
        Actions of Bisphenol A and Bisphenol S on the Reproductive Neuroendocrine System During Early Development in Zebrafish.
        Endocrinology. 2015; 157: 636-647
        • Zhao C.
        • Tang Z.
        • Yan J.
        • et al.
        Bisphenol S exposure modulate macrophage phenotype as defined by cytokines profiling, global metabolomics and lipidomics analysis.
        Sci Total Environ. 2017; 592: 357-365
        • Gu J.
        • Wang H.
        • Zhou L.
        • et al.
        Oxidative stress in bisphenol AF-induced cardiotoxicity in zebrafish and the protective role of N-acetyl N-cysteine.
        Sci total Environ. 2020; 731: 139190
        • Chin K.-Y.
        • Pang K.-L.
        • Mark-Lee W.F.
        A Review on the Effects of Bisphenol A and Its Derivatives on Skeletal Health.
        Int J Med Sci. 2018; 15: 1043-1050
        • Danzl E.
        • Sei K.
        • Soda S.
        • et al.
        Biodegradation of bisphenol A, bisphenol F and bisphenol S in seawater.
        Int J Environ Res Public Health. 2009; 6: 1472-1484
        • Ike M.
        • Chen M.Y.
        • Danzl E.
        • et al.
        Biodegradation of a variety of bisphenols under aerobic and anaerobic conditions.
        Water Sci Technol. 2006; 53: 153-159
        • Bellanger M.
        • Demeneix B.
        • Grandjean P.
        • et al.
        Neurobehavioral deficits, diseases, and associated costs of exposure to endocrine-disrupting chemicals in the European union.
        J Clin Endocrinol Metab. 2015; 100: 1256-1266
        • Trasande L.
        When enough data are not enough to enact policy: The failure to ban chlorpyrifos.
        PLOS Biol. 2017; 15: e2003671
        • Lu C.
        • Toepel K.
        • Irish R.
        • et al.
        Organic Diets Significantly Lower Children's Dietary Exposure to Organophosphorus Pesticides.
        Environ Health Perspect. 2006; 114: 260-263
        • Bradman A.
        • Quirós-Alcalá L.
        • Castorina R.
        • et al.
        Effect of Organic Diet Intervention on Pesticide Exposures in Young Children Living in Low-Income Urban and Agricultural Communities.
        Environ Health Perspect. 2015; 123: 1086-1093
        • Harley K.G.
        • Kogut K.
        • Madrigal D.S.
        • et al.
        Reducing Phthalate, Paraben, and Phenol Exposure from Personal Care Products in Adolescent Girls: Findings from the HERMOSA Intervention Study.
        Environ Health Perspect. 2016; 124: 1600-1607
        • Rudel R.A.
        • Gray J.M.
        • Engel C.L.
        • et al.
        Food Packaging and Bisphenol A and Bis(2-Ethyhexyl) Phthalate Exposure: Findings from a Dietary Intervention.
        Environ Health Perspect. 2011; 119
        • Young A.S.
        • Hauser R.
        • James-Todd T.M.
        • et al.
        Impact of “healthier” materials interventions on dust concentrations of per- and polyfluoroalkyl substances, polybrominated diphenyl ethers, and organophosphate esters.
        Environment International, 2020: 106151
        • Sathyanarayana S.
        • Alcedo G.
        • Saelens B.E.
        • et al.
        Unexpected results in a randomized dietary trial to reduce phthalate and bisphenol A exposures.
        J Expo Sci Environ Epidemiol. 2013; 23: 378-384
        • Galloway T.S.
        • Baglin N.
        • Lee B.P.
        • et al.
        An engaged research study to assess the effect of a 'real-world' dietary intervention on urinary bisphenol A (BPA) levels in teenagers.
        BMJ Open. 2018; 8: e018742
        • Forman J.
        • Silverstein J.
        Organic foods: health and environmental advantages and disadvantages.
        Pediatrics. 2012; 130: e1406-e1415
        • Krol W.J.
        • Arsenault T.L.
        • Pylypiw H.M.
        • et al.
        Reduction of Pesticide Residues on Produce by Rinsing.
        J Agric Food Chem. 2000; 48: 4666-4670
        • Council On Environmental H.
        • Roberts J.R.
        • Karr C.J.
        • et al.
        Pesticide Exposure in Children.
        Pediatrics. 2012; 130: e1757-e1763
        • Trasande L.
        • Newman N.
        • Long L.
        • et al.
        Translating Knowledge About Environmental Health to Practitioners: Are We Doing Enough?.
        Mount Sinai J Med A J Translational Personalized Med. 2010; 77: 114-123
        • Stotland N.E.
        • Sutton P.
        • Trowbridge J.
        • et al.
        Counseling patients on preventing prenatal environmental exposures - a mixed-methods study of obstetricians.
        PLoS One. 2014; 9: e98771
        • McCurdy L.E.
        • Roberts J.
        • Rogers B.
        • et al.
        Incorporating Environ Health into Pediatr Med Nurs Education. 2004; 112: 1755-1760